Graphs — Depth First Search

EECS 2011
UYQBSIs ' Prof. J. Elder -1- Last Updated December 3, 2015

UUUUUUUUUU

UNIVERSITE
u

N
N

1
1

v
v

E
E

R
R

sﬁﬁ!@“‘wgﬁwﬁ

Thistletown ;\(%'

|

|
North Kipling Park

Graph Search Algorithms

1
\

Copyright @20

vnm

1T E
Ty

"

/\
Pa
-

4 Microsoft Cot3. and/or its sup%_e«s All

YORK

EECS 2011

A \Jg :

g —
Clarinda Park ~ | F[Qveﬂ ‘@L
“I : Manor[Park | caa)
Horth Vorﬂ‘ b3
b
T
ot Don YOk Cemetery |
Parklands

Downsview
Dells

w\cha\k'arm
i Park g

Downsview

L Aiport

i e
1 s T

Brookdale
Park.

Gardens

Sunnybrook Park |

W\mm
Creiek Park-

Ernest

* Thompson
Seton Park Taylor
RY Burgess Creek

Prof. J. Elder

Last Updated December 3, 2015

» DFS Algorithm
» DFS Example

» DFS Applications

YORK ' EECS 2011

“““““““““ Prof. J. Elder

IIIIIIIIII

Outline

Last Updated December 3, 2015

» DFS Algorithm
» DFS Example

» DFS Applications

YORK ' EECS 2011

“““““““““ Prof. J. Elder

IIIIIIIIII

Outline

Last Updated December 3, 2015

Depth First Search (DFS)

> |ldea:

O Continue searching “deeper” into the graph, until we get
stuck.

O If all the edges leaving v have been explored we “backtrack”
to the vertex from which v was discovered.

L Analogous to Euler tour for trees

» Used to help solve many graph problems, including
O Nodes that are reachable from a specific node v
[Detection of cycles
O Extraction of strongly connected components

O Topological sorts

EECS 2011
YO RK ' -5- Last Updated December 3, 2015
””””””””” Prof. J. Elder

IIIIIIIIII

Depth-First Search

» The DFS algorithm is
similar to a classic
strategy for exploring a
maze

J We mark each
intersection, corner and
dead end (vertex) visited

L We mark each corridor
(edge) traversed

O We keep track of the path
back to the entrance
(start vertex) by means of
a rope (recursion stack)

YORK ' EECS 2011

””””””””” Prof. J. Elder

IIIIIIIIII

T

Last Updated December 3, 2015

Depth-First Search

Input: Graph & =(V,E) (directed or undirected)

» Explore every edge, starting from different vertices if necessary.
»> As soon as vertex discovered, explore from it.

» Keep track of progress by colouring vertices:
4 Black: undiscovered vertices
O Red: discovered, but not finished (still exploring from it)

O Gray: finished (Discovered everything reachable from it).

EECS 2011
UYQRSK ' Prof. J. Elder -7- Last Updated December 3, 2015

IIIIIIIIII

DFS Example on Undirected Graph

unexplored

being explored

finished

unexplored edge

discovery edge

|| oce

back edge

EECS 2011
YO RK ' -8- Last Updated December 3, 2015
““““““““““ Prof. J. Elder

IIIIIIIIII

Example (cont.)

EECS 2011
UYQBSK ' Prof. J. Elder -9- Last Updated December 3, 2015

IIIIIIIIII

DFS Algorithm Pattern

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex u e V[G]
color[u] = BLACK //initialize vertex
for each vertex u e V[G]
if colorfu] = BLACK //as yet unexplored
DFS-Visit(u)

’

\

[

EECS 2011
UYQBSIg ' Prof. J. Elder -10 - Last Updated December 3, 2015

UUUUUUUUUU

DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colourfu] « RED
for each v € Adj[u] //explore edge (u,v)
If color[v] = BLACK

DFS-Visit(v) /’\

colour[u]l < GRAY

EECS 2011
UYQBSIg ' Prof. J. Elder -11- Last Updated December 3, 2015

UUUUUUUUUU

Properties of DFS

Property 1

DFS-Visit(u) visits all the
vertices and edges in the
connected component of u

Property 2 /’\
The discovery edges :

labeled by DFS-Visit(u) |
form a spanning tree of the :
connected component of u -

EECS 2011
YORK ' -12- Last Updated December 3, 2015
EEEEEEEEE Prof. J. Elder

UUUUUUUUUU

DFS Algorithm Pattern

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex u e V[G] b
coloru] = BLACK //initialize vertex ~\. total work
for each vertex u e V[G]) = 6(V)
if colorfu] = BLACK //as yet unexplored
DFS-Visit(u)

Q

\

[

EECS 2011
UYQBSIi ' Prof. J. Elder -13 - Last Updated December 3, 2015

UUUUUUUUUU

DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colourfu] « RED
for each v e Adj[u] //lexplore edge (u,v))

if color{v] = BLACK ot w:;lf ;
DFS-Visit(v) = VEZVI jlv1l=6(E)
colour[u] « GRAY -

Thus running time = 6(V + E) M
(assuming adjacency list structure)

EECS 2011
XQRI& ' Prof. J. Elder -14 - Last Updated December 3, 2015

IIIIIIIIII

Variants of Depth-First Search

» In addition to, or instead of labeling vertices with colours, they can be
labeled with discovery and finishing times.

» ‘Time’ is an integer that is incremented whenever a vertex changes state

O from unexplored to discovered

L from discovered to finished

» These discovery and finishing times can then be used to solve other
graph problems (e.g., computing strongly-connected components)

Input: Graph & =(V,E) (directed or undirected)

Output: 2 timestamps on each vertex:

d[v] = discovery time.
f[v] = finishing time. 1<dvl<flv]<2|V|

EECS 2011
YORK ' -15 - Last Updated December 3, 2015
“““““““““ Prof. J. Elder

IIIIIIIIII

DFS Algorithm with Discovery and Finish Times
DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex u € V[G]
color[u] = BLACK //initialize vertex
time < 0
for each vertex u € V[G]
if color[u] = BLACK //as yet unexplored
DFS-Visit(u) f .

\

[

EECS 2011
UYQBSIS ' Prof. J. Elder -16 - Last Updated December 3, 2015

UUUUUUUUUU

DFS Algorithm with Discovery and Finish Times

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colour[u] <« RED
time « time +1
d[u] « time
for each v € Adj[u] //explore edge (u,v)

if color[v] = BLACK /\

DFS-Visit(v)
colour[u]l < GRAY
time « time + 1
flu] < time
UYQBSIS ' SECS 2011 -17 - Last Updated December 3, 2015

Prof. J. Elder

UUUUUUUUUU

Other Variants of Depth-First Search

» The DFS Pattern can also be used to

O Compute a forest of spanning trees (one for each call to DFS-
visit) encoded in a predecessor list 11[u]

] Label edges in the graph according to their role in the search
< Discovery tree edges, traversed to an undiscovered vertex

< Forward edges, traversed to a descendent vertex on the current
spanning tree

<> , traversed to an ancestor vertex on the current
spanning tree

< Cross edges, traversed to a vertex that has already been
discovered, but is not an ancestor or a descendent

EECS 2011
YORK ' -18 - Last Updated December 3, 2015
““““““““ : Prof. J. Elder

IIIIIIIIII

» DFS Algorithm
» DFS Example

» DFS Applications

YORK ' EECS 2011

“““““““““ Prof. J. Elder

IIIIIIIIII

Outline

-19-

Last Updated December 3, 2015

Discovered
Not Finished
Stack

<node,# edges>

/

- 20 1

Last Updated December 3, 2015

DFS Discovered
Not Finished
Stack
<node,# edges>

s,0)

/

/ Last Updated December 3, 2015

DFS Discovered
Not Finished

1/

Stack

<node,# edges>

/

—>QC| /
g
V.
J
a,(
s, 1
m/ /

/ Last Updated December 3, 2015

DFS Discovered
Not Finished

1/

Stack

<node,# edges>

/

—QC| /
g
V.
J 1 e0
a,l
s, 1
m /

/ Last Updated December 3, 2015

DFS Discovered
Not Finished

1/

Stack

<node,# edges>

/

—>QC| /
g
! h,0
L/ e,
a,l
S, 1
m /

/ Last Updated December 3, 2015

DFS Discovered

Not Finished
g [1 Stack
— <node,# edges>
—>QC /
3/C g
k,0
V. |h,
L l]e 1
a,l
4/ S, 1
ml

YORK ' EECS 2011

.......... Prof. J. Elder -25 -1 / Last Updated December 3, 2015

IIIIIIIIII

DFS Discovered
Not Finished
S [1 Stack
<node,# edges>

<
=

9
A) A | B\
r

m\’QDO

\9
A B
r

5/6

- 26 -1 / Last Updated December 3, 2015

3/

DFS

1/

5/6

Discovered
Not Finished
Stack
<node,# edges>

9
\
P

0}
\9

\ B

r

Last Updated December 3, 2015

DFS Discovered
Not Finished
S [1 Stack
<node,# edges>

3/

4/7

5/6

- 28 -1 / Last Updated December 3, 2015

DFS Discovered

Cross Edge to Finished node: d[hd[i] Not Finished
' g [1/ Stack

<node,# edges>

—>QC /
g
' i1
L 1le2
a,l
s, 1
m/ /

5/6

-29 -1 / Last Updated December 3, 2015

DFS Discovered
Not Finished
s [Stack
<node,# edges>

3/

4/7

5/6

- 30 1 / Last Updated December 3, 2015

3/

4/7

® —
YORKJQ eecs 2011 K

IIIIIIIIII
IIIIIIIIII

hO

Prof. J. Elder

DFS
1/
/ g
5/6
9/

I c,2

Discovered
Not Finished
Stack
<node,# edges>

1,0
1,3

a,l
s, 1

Last Updated December 3, 2015

3/

4/7

® —
YORKJQ eecs 2011 K

IIIIIIIIII
IIIIIIIIII

hO

Prof. J. Elder

DFS
1/
/ g
5/6
9/

I c,2

Discovered
Not Finished
Stack
<node,# edges>

1,1
1,3

a,l
s, 1

Last Updated December 3, 2015

3/

4/7

DFS

1/

5/6

Discovered
Not Finished
Stack
<node,# edges>

9/10

Last Updated December 3, 2015

DFS

1/

11/

5/6

Discovered
Not Finished
Stack
<node,# edges>

9/10

Last Updated December 3, 2015

DFS

1/

11/

5/6

Discovered
Not Finished
Stack
<node,# edges>

J,0
g1
1,4
c,2
a,l
s, 1

[]
-119/10

Last Updated December 3, 2015

— -

5/6

11/

=
-

g

. 1,4
- p) 2 c,2

Discovered
Not Finished
Stack

L <node,# edges>

[]
-119/10

el 1
PR
g1

a,l

s, 1

Last Updated December 3, 2015

DFS

1/

5/6

11/

g

Discovered
Not Finished
Stack
<node,# edges>

m,0
J,2

g,1

- 1,4
]| 12/ c,2
a,l
s, 1

|/

13/

9/10

Last Updated December 3, 2015

DFS

1/

5/6

11/

g

Discovered
Not Finished
Stack
<node,# edges>

m, 1
J,2

g1

: 1,4
]| 12/ c,2
a,l
s, 1

|/

13/

[]
-119/10

Last Updated December 3, 2015

DFS

1/

5/6

11/

/‘ mli13/14
(J

Discovered
Not Finished
Stack
<node,# edges>

-119/10

el /
J,2
g1
.cb 12/ é’fzt
a,l
s, 1

Last Updated December 3, 2015

DFS

1/

5/6

11/

Discovered
Not Finished
Stack
<node,# edges>

e /
g1
V.o |i4
J112/15 C,2
a,l
s, 1

13/14

[]
-119/10

Last Updated December 3, 2015

DFS Discovered

Not Finished
Stack

<node,# edges>

J112/15 C,2

* mili3/14
T /
(J

- 41 -1 9/10 Last Updated December 3, 2015

3/

4/7

® —
YORKJQ eecs 2011 K

IIIIIIIII

hO

£

UUUUUUUUU

Y

Prof. J. Elder

DFS

5/6

Discovered
Not Finished
Stack
<node,# edges>

f,0
: 1,5
J112/15 C,2
a,l
s, 1

13/14

Last Updated December 3, 2015

DFS Discovered
Not Finished
Stack
<node,# edges>

f,1
: 1,5
J112/15 092
a,l
s, 1

* mili3/14
6 /
(J

-43 -1 9/10 Last Updated December 3, 2015

DFS Discovered
Not Finished
Stack
<node,# edges>

3/
C
: 1,5
J112/15 092
a,l
417 S’l

* mili3/14
56 /
(J

-44 -1 9/10 Last Updated December 3, 2015

DFS Discovered

Not Finished
Stack

<node,# edges>

/
3/
12/15 C,2
a,l
417 |h'*® S,l

* mili3/14
6 /
(J

-45 -1 9/10 Last Updated December 3, 2015

DFS

Forward Edge

Discovered
Not Finished
Stack
<node,# edges>

12/15 093

* mili3/14
6 /
(J

Last Updated December 3, 2015

End of Lecture

Dec 3, 2015
The final exam will concern material only up
to this point.
UYQRSKE ' SECS 2011 - 47 - Last Updated December 3, 2015

Prof. J. Elder

IIIIIIIIII

3/19

4/7

® —
YORKQI eecs 2011 K

IIIIIIIIII
UUUUUUUUUU

DFS

hO,

/.P’

5/6

Discovered
Not Finished

j12/15

13/14

Prof. J. Elder

Stack

<node,# edges>

Last Updated December 3, 2015

3/19

4/7

® —
YORKQI eecs 2011 K

IIIIIIIIII
IIIIIIIIII

DFS

h.,

/.P’

5/6

Discovered
Not Finished

j12/15

13/14

Prof. J. Elder

Stack

<node,# edges>

a,2
s, 1

Last Updated December 3, 2015

3/19

4/7

® —
YORKQI eecs 2011 K

IIIIIIIIII
IIIIIIIIII

Prof. J. Elder

DFS

5/6

Discovered
Not Finished

12/15

13/14

Stack

<node,# edges>

s, 1

Last Updated December 3, 2015

3/19

4/7

® —
YORKQI eecs 2011 K

IIIIIIIIII
IIIIIIIIII

2/20

Prof. J. Elder

DFS

1/

5/6

Discovered
Not Finished

Stack

<node,# edges>

12/15

13/14

d,0
S,2

Last Updated December 3, 2015

3/19

4/7

® —
YORKQI eecs 2011 K

IIIIIIIIII
IIIIIIIIII

2/20

Prof. J. Elder

DFS

1/

5/6

Discovered
Not Finished

Stack

<node,# edges>

12/15

13/14

d,1
S,2

Last Updated December 3, 2015

DFS
S |1
2120
a.
3/19
C‘\.
o 1

AlT ho,/

® —
YORKQI eecs 2011 K

IIIIIIIIII
IIIIIIIIII

5/6

Discovered
Not Finished

Stack

<node,# edges>

j12/15

13/14

Prof. J. Elder

d,2
S,2

Last Updated December 3, 2015

3/19

4/7

® —
YORKQI eecs 2011 K

IIIIIIIIII
IIIIIIIIII

2/20

Prof. J. Elder

DFS

1/

5/6

Discovered
Not Finished

Stack

<node,# edges>

22/

12/15

13/14

e,(

d,3
S,2

Last Updated December 3, 2015

DFS Discovered

Not Finished
g [1/ Stack
= — <node,# edges>
a’.
22/
3/19
Co—
—>e
Jhzis) | e, 1
/. lk d93
47 |h® S,2

¥ mili13/14
e /
(]

EECS 2011 k. i
YORI& ' =) -55 -1 9/10 Last Updated December 3, 2015
““““““ rof. J. Elder

IIIIIIIIII

DFS Discovered

Not Finished
S [1 Stack
— — <node,# edges>
a.
0C|22/23
3/19
co—
—>e
j12/15
/. lk d’3
47 |h® S,2

* mili3/14
6 /
(J

EECS 2011 k. h
YORI(ﬁ ' - 56 -1 9/10 Last Updated December 3, 2015
““““““““ Prof. J. Elder

IIIIIIIIII

DFS Discovered

Not Finished
Stack

<node,# edges>

22123
3119
Co—
12/15
417 S,2

* mili3/14
6 /
(J

EECS 2011 k. h
YORI(ﬁ ' - 57 -1 9/10 Last Updated December 3, 2015
““““““““ Prof. J. Elder

IIIIIIIIII

DFS Discovered

Not Finished
Stack

<node,# edges>

22123
319
co—
12/15
417 S,3

¥ mili13/14
e /
(]

EECS 2011 k\‘ i
YORI(E l =) - 58 -1 9/10 Last Updated December 3, 2015
“““““““ rof. J. Elder

IIIIIIIIII

/‘ik

2/20
a (]
3/19
Co—
~— @
47 |h®

(P
YORK ' EECS 2011 k

IIIIIIIIII
IIIIIIIIII

f

Prof. J. Elder

L

17/18

DFS

1/

8/19

5/6

Discovered

Not Finished
Stack
o= <node,# edges>
0C|22/23

j12/15

13/14

Last Updated December 3, 2015

/‘ik

2/20
a (]
3/19
Co—
~— @
47 |h®

(P
YORK ' EECS 2011 k

IIIIIIIIII
IIIIIIIIII

f

Prof. J. Elder

L

17/18

DFS

1/

8/19

5/6

Discovered

Not Finished
Stack
o= <node,# edges>
0C|22/23

j12/15

13/14

Last Updated December 3, 2015

2/20
d o
3/19
Co—
~— @
47 |h®

(P
YORK ' EECS 2011 k

UUUUUUU £
UUUUUUUUUU

f

Prof. J. Elder

L

17/18

DFS

1/

8/19

5/6

Discovered

Not Finished
Stack
o= <node,# edges>
0C|22/23

12/15

13/14

Last Updated December 3, 2015

2/20
d o
3/19
Co—
~— @
47 |h®

(P
YORK ' EECS 2011 k

UUUUUUU £
UUUUUUUUUU

f

Prof. J. Elder

L

17/18

DFS

1/

8/19

5/6

Discovered

Not Finished
Stack
o= <node,# edges>
0C|22/23

12/15

/‘ mli13/14
(J

Last Updated December 3, 2015

DFS Discovered
Not Finished
Stack
<node,# edges>

) 25/26

22/23
3/19
Co—
12/15
4/7 894

* mili3/14
6 /
(J

EECS 2011 k\‘ h
YORI{Q ' - 63 -1 9/10 Last Updated December 3, 2015
““““““““ Prof. J. Elder

IIIIIIIIII

— Tree Edges DFS Discovered

— Back Edges Not Finished
—> Forward Edges S [1/27] Finished! Stack
— Cross Edges °
< >
2/20 eD[25/26 node,# edges
Aq |
0C|22/23
d21/24 |
3/19 /
o
C —® {|17/18

8/19 12/15

4/7 h@;

® m13/14
5/6 /
o

YORK EECS 2011 k\‘/ﬁ
- ' - 64 -1 9/10 Last Updated December 3, 2015
NN OOR Prof. J. Elder

Classification of Edges in DFS

1. Tree edges are edges in the depth-first forest G_. Edge (u, v) is a tree edge if
v was first discovered by exploring edge (u, v).

2. Back edges are those edges (u, v) connecting a vertex u to an ancestor vin a
depth-first tree.

3. Forward edges are non-tree edges (u, v) connecting a vertex u to a
descendant v in a depth-first tree.

4. Cross edges are all other edges. They can go between vertices in the same
depth-first tree, as long as one vertex is not an ancestor of the other.

[2/20]
(S
c ° m
[8/19]

12/19

/o
.,
¢ [13/14
m
P 5/6
L)

EECS 2011
YORK ' - 65 - k II_L%@ﬂUpdated December 3, 2015

““““““““ Prof. J. Elder

UUUUUUUUUU

417
h

Classification of Edges in DFS

1. Tree edges: Edge (u, v)is a tree edge if v was black when (u, v) traversed.
2. Back edges: (u, v)is a back edge if v was red when (u, v) traversed.

3. Forward edges: (u, v) is a forward edge if v was gray when (u, v) traversed
and d[v] > d[u].

4. Cross edges (u,v) is a cross edge if v was gray when (u, v) traversed and
d[v] < d[u].

Classifying edges can help to identify [220] \
roperties of the graph, e.g., a graph is \
iRt QElpinly S8k, EHEIRE]S e Y
[3/19]
¢ JT:
[8/19]

acyclic iff DFS yields no back edges. f x
1/1

12/15

- ./‘/
" .
P56 / "
K * [9rt0
EECS 2011 1
YOR K ' - 66 - Last Updated December 3, 2015

IIIIIIIII
IIIIIIIIII

Prof. J. Elder

DFS on Undirected Graphs

» |In a depth-first search of an undirected graph, every
edge is either a tree edge or a back edge.

» Why?

EECS 2011
UYQBSIg ' Prof. J. Elder - 67 - Last Updated December 3, 2015

UUUUUUUUUU

DFS on Undirected Graphs

»> Suppose that (u,v) is a forward edge or a
cross edge in a DFS of an undirected graph.

> (u,v) is a forward edge or a cross edge when v :
is already Finished (grey) when accessed from ’
u.
u

» This means that all vertices reachable from v
have been explored.

» Since we are currently handling u, u must be red. x

» Clearly v is reachable from u. /

» Since the graph is undirected, u must also be . E
reachable from v.

» Thus u must already have been Finished: u must
be grey.

» Contradiction!

UYQRSK ' =ECS 2011 - 68 - Last Updated December 3, 2015

Prof. J. Elder

IIIIIIIIII

» DFS Algorithm
» DFS Example

» DFS Applications

YORK ' EECS 2011

“““““““““ Prof. J. Elder

IIIIIIIIII

Outline

- 69 -

Last Updated December 3, 2015

DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colourfu] « RED
for each v e Adj[u] //lexplore edge (u,v))

if color{v] = BLACK ot w:;lf ;
DFS-Visit(v) = VEZVI jlv1l=6(E)
colour[u] « GRAY -

Thus running time = 6(V + E) M
(assuming adjacency list structure)

EECS 2011
XQBSI& ' Prof. J. Elder -70 - Last Updated December 3, 2015

IIIIIIIIII

DFS Application 1: Path Finding

» The DFS pattern can be used to find a path between two given vertices u and z,
if one exists

» We use a stack to keep track of the current path

» If the destination vertex z is encountered, we return the path as the contents of

the stack DFS-Path (u,z,stack)
Precondition: u and z are vertices in a graph, stack contains current path
Postcondition: returns true if path from u to z exists, stack contains path
colour[u] « RED
push u onto stack
ifu=z
return TRUE
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK
if DFS-Path(v, z,stack)
return TRUE

colour[u]l « GRAY
pop u from stack
return FALSE

YORK ' EECS 2011

Prof. J. Elder -71- Last Updated December 3, 2015

IIIIIIIIII

DFS Application 2: Cycle Finding

» The DFS pattern can be used to determine whether a graph is acyclic.
> |If a back edge is encountered, we return true.

DFS-Cycle (u)
Precondition: u is a vertex in a graph G
Postcondition: returns true if there is a cycle reachable from u.
colourfu] « RED
for each v € Adj[u] //explore edge (u,v)
if color[v] = RED //back edge
return true
else if color[v] = BLACK
if DFS-Cycle(v)
return true
colour[u] <« GRAY
return false

EECS 2011
UYQRSK ' Prof. J. Elder -72 - Last Updated December 3, 2015

IIIIIIIIII

Why must DFS on a graph with a cycle
generate a back edge”?

» Suppose that vertex s is in a connected
component S that contains a cycle C. @

» Since all vertices in S are reachable from
S, they will all be visited by a DFS from s.

> Let v be the first vertex in C reached by a
DFS from s.

» There are two vertices u and w adjacent
to v on the cycle C.

» wlog, suppose u is explored first.

» Since w is reachable from u, w will
eventually be discovered.

» When exploring w's adjacency list, the
back-edge (w, v) will be discovered.

EECS 2011
YORK ' -73 - Last Updated December 3, 2015
””””””””” Prof. J. Elder

IIIIIIIIII

» DFS Algorithm
» DFS Example

» DFS Applications

YORK ' EECS 2011

“““““““““ Prof. J. Elder

IIIIIIIIII

Outline

-74 -

Last Updated December 3, 2015

