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Depth First Search (DFS)

> |ldea:

O Continue searching “deeper” into the graph, until we get
stuck.

O If all the edges leaving v have been explored we “backtrack”
to the vertex from which v was discovered.

L Analogous to Euler tour for trees

» Used to help solve many graph problems, including
O Nodes that are reachable from a specific node v
[ Detection of cycles
O Extraction of strongly connected components

O Topological sorts
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Depth-First Search

» The DFS algorithm is
similar to a classic
strategy for exploring a
maze

J We mark each
intersection, corner and
dead end (vertex) visited

L We mark each corridor
(edge ) traversed

O We keep track of the path
back to the entrance
(start vertex) by means of
a rope (recursion stack)
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Depth-First Search

Input: Graph & =(V,E) (directed or undirected)

» Explore every edge, starting from different vertices if necessary.
»> As soon as vertex discovered, explore from it.

» Keep track of progress by colouring vertices:
4 Black: undiscovered vertices
O Red: discovered, but not finished (still exploring from it)

O Gray: finished (Discovered everything reachable from it).
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DFS Example on Undirected Graph

unexplored

being explored

finished

unexplored edge

discovery edge

|| oce

back edge
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Example (cont.)
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DFS Algorithm Pattern

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex u e V[G]
color[u] = BLACK //initialize vertex
for each vertex u e V[G]
if colorfu] = BLACK //as yet unexplored
DFS-Visit(u)

’
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DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colourfu] « RED
for each v € Adj[u] //explore edge (u,v)
If color[v] = BLACK

DFS-Visit(v) /’\

colour[u]l < GRAY
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Properties of DFS

Property 1

DFS-Visit(u) visits all the
vertices and edges in the
connected component of u

Property 2 /’\
The discovery edges :

labeled by DFS-Visit(u) |
form a spanning tree of the :
connected component of u -
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DFS Algorithm Pattern

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex u e V[G] b
coloru] = BLACK //initialize vertex ~\. total work
for each vertex u e V[G] ) = 6(V)
if colorfu] = BLACK //as yet unexplored
DFS-Visit(u)

Q

\
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DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colourfu] « RED
for each v e Adj[u] //lexplore edge (u,v) )

if color{v] = BLACK ot w:;lf ;
DFS-Visit(v) = VEZVI jlv1l=6(E)
colour[u] « GRAY -

Thus running time = 6(V + E) M
(assuming adjacency list structure)
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Variants of Depth-First Search

» In addition to, or instead of labeling vertices with colours, they can be
labeled with discovery and finishing times.

» ‘Time’ is an integer that is incremented whenever a vertex changes state

O from unexplored to discovered

L from discovered to finished

» These discovery and finishing times can then be used to solve other
graph problems (e.g., computing strongly-connected components)

Input: Graph & =(V,E) (directed or undirected)

Output: 2 timestamps on each vertex:

d[v] = discovery time.
f[v] = finishing time. 1<dvl<flv]<2|V|
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DFS Algorithm with Discovery and Finish Times
DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex u € V[G]
color[u] = BLACK //initialize vertex
time < 0
for each vertex u € V[G]
if color[u] = BLACK //as yet unexplored
DFS-Visit(u) f .

\

[
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DFS Algorithm with Discovery and Finish Times

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colour[u] <« RED
time « time +1
d[u] « time
for each v € Adj[u] //explore edge (u,v)

if color[v] = BLACK /\

DFS-Visit(v)
colour[u]l < GRAY
time « time + 1
flu] < time
UYQBSIS ' SECS 2011 -17 - Last Updated December 3, 2015
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Other Variants of Depth-First Search

» The DFS Pattern can also be used to

O Compute a forest of spanning trees (one for each call to DFS-
visit) encoded in a predecessor list 11[u]

] Label edges in the graph according to their role in the search
< Discovery tree edges, traversed to an undiscovered vertex

< Forward edges, traversed to a descendent vertex on the current
spanning tree

<> , traversed to an ancestor vertex on the current
spanning tree

< Cross edges, traversed to a vertex that has already been
discovered, but is not an ancestor or a descendent
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End of Lecture

Dec 3, 2015
The final exam will concern material only up
to this point.
UYQRSKE ' SECS 2011 - 47 - Last Updated December 3, 2015

Prof. J. Elder

IIIIIIIIII



3/19

4/7

® —
YORKQI eecs 2011 K

IIIIIIIIII
UUUUUUUUUU

DFS

hO,

/.P’

5/6

Discovered
Not Finished

j12/15

13/14

Prof. J. Elder

Stack

<node,# edges>

Last Updated December 3, 2015



3/19

4/7

® —
YORKQI eecs 2011 K

IIIIIIIIII
IIIIIIIIII

DFS

h.,

/.P’

5/6

Discovered
Not Finished

j12/15

13/14

Prof. J. Elder

Stack

<node,# edges>

a,2
s, 1

Last Updated December 3, 2015



3/19

4/7

® —
YORKQI eecs 2011 K

IIIIIIIIII
IIIIIIIIII

Prof. J. Elder

DFS

5/6

Discovered
Not Finished

12/15

13/14

Stack

<node,# edges>

s, 1

Last Updated December 3, 2015



3/19

4/7

® —
YORKQI eecs 2011 K

IIIIIIIIII
IIIIIIIIII

2/20

Prof. J. Elder

DFS

1/

5/6

Discovered
Not Finished

Stack

<node,# edges>

12/15

13/14

d,0
S,2

Last Updated December 3, 2015



3/19

4/7

® —
YORKQI eecs 2011 K

IIIIIIIIII
IIIIIIIIII

2/20

Prof. J. Elder

DFS

1/

5/6

Discovered
Not Finished

Stack

<node,# edges>

12/15

13/14

d,1
S,2

Last Updated December 3, 2015



DFS
S |1
2120
a.
3/19
C‘\.
o 1

AlT ho,/

® —
YORKQI eecs 2011 K

IIIIIIIIII
IIIIIIIIII

5/6

Discovered
Not Finished

Stack

<node,# edges>

j12/15

13/14

Prof. J. Elder

d,2
S,2

Last Updated December 3, 2015



3/19

4/7

® —
YORKQI eecs 2011 K

IIIIIIIIII
IIIIIIIIII

2/20

Prof. J. Elder

DFS

1/

5/6

Discovered
Not Finished

Stack

<node,# edges>

22/

12/15

13/14

e,(

d,3
S,2

Last Updated December 3, 2015



DFS Discovered

Not Finished
g [ 1/ Stack
= — <node,# edges>
a’.
22/
3/19
Co—
—>e
Jhzis) | e, 1
/. lk d93
47 |h® S,2

¥ mili13/14
e /
( ]

EECS 2011 k. i
YORI& ' =) -55 -1 9/10 Last Updated December 3, 2015
““““““ rof. J. Elder

IIIIIIIIII




DFS Discovered

Not Finished
S [ 1 Stack
— — <node,# edges>
a.
0C|22/23
3/19
co—
—>e
j12/15
/. lk d’3
47 |h® S,2

* mili3/14
6 /
( J

EECS 2011 k. h
YORI(ﬁ ' - 56 -1 9/10 Last Updated December 3, 2015
““““““““ Prof. J. Elder

IIIIIIIIII




DFS Discovered

Not Finished
Stack

<node,# edges>

22123
3119
Co—
12/15
417 S,2

* mili3/14
6 /
( J

EECS 2011 k. h
YORI(ﬁ ' - 57 -1 9/10 Last Updated December 3, 2015
““““““““ Prof. J. Elder

IIIIIIIIII




DFS Discovered

Not Finished
Stack

<node,# edges>

22123
319
co—
12/15
417 S,3

¥ mili13/14
e /
( ]

EECS 2011 k\‘ i
YORI(E l =) - 58 -1 9/10 Last Updated December 3, 2015
“““““““ rof. J. Elder

IIIIIIIIII




/‘ik

2/20
a ( ]
3/19
Co—
~— @
47 |h®

(P
YORK ' EECS 2011 k

IIIIIIIIII
IIIIIIIIII

f

Prof. J. Elder

L

17/18

DFS

1/

8/19

5/6

Discovered

Not Finished
Stack
o= <node,# edges>
0C|22/23

j12/15

13/14

Last Updated December 3, 2015



/‘ik

2/20
a ( ]
3/19
Co—
~— @
47 |h®

(P
YORK ' EECS 2011 k

IIIIIIIIII
IIIIIIIIII

f

Prof. J. Elder

L

17/18

DFS

1/

8/19

5/6

Discovered

Not Finished
Stack
o= <node,# edges>
0C|22/23

j12/15

13/14

Last Updated December 3, 2015



2/20
d o
3/19
Co—
~— @
47 |h®

(P
YORK ' EECS 2011 k

UUUUUUU £
UUUUUUUUUU

f

Prof. J. Elder

L

17/18

DFS

1/

8/19

5/6

Discovered

Not Finished
Stack
o= <node,# edges>
0C|22/23

12/15

13/14

Last Updated December 3, 2015



2/20
d o
3/19
Co—
~— @
47 |h®

(P
YORK ' EECS 2011 k

UUUUUUU £
UUUUUUUUUU

f

Prof. J. Elder

L

17/18

DFS

1/

8/19

5/6

Discovered

Not Finished
Stack
o= <node,# edges>
0C|22/23

12/15

/‘ mli13/14
( J

Last Updated December 3, 2015



DFS Discovered
Not Finished
Stack
<node,# edges>

) 25/26

22/23
3/19
Co—
12/15
4/7 894

* mili3/14
6 /
( J

EECS 2011 k\‘ h
YORI{Q ' - 63 -1 9/10 Last Updated December 3, 2015
““““““““ Prof. J. Elder

IIIIIIIIII




— Tree Edges DFS Discovered

— Back Edges Not Finished
—> Forward Edges S [1/27] Finished! Stack
— Cross Edges °
< >
2/20 eD[25/26 node,# edges
Aq |
0C|22/23
d21/24 |
3/19 /
o
C —® {|17/18

8/19 12/15

4/7 h@;

® m13/14
5/6 /
o

YORK EECS 2011 k\‘/ﬁ
- ' - 64 -1 9/10 Last Updated December 3, 2015
NN OOR Prof. J. Elder




Classification of Edges in DFS

1. Tree edges are edges in the depth-first forest G_. Edge (u, v) is a tree edge if
v was first discovered by exploring edge (u, v).

2. Back edges are those edges (u, v) connecting a vertex u to an ancestor vin a
depth-first tree.

3. Forward edges are non-tree edges (u, v) connecting a vertex u to a
descendant v in a depth-first tree.

4. Cross edges are all other edges. They can go between vertices in the same
depth-first tree, as long as one vertex is not an ancestor of the other.

[2/20]
(S
c ° m
[8/19]

12/19

/o
.,
¢ [13/14
m
P 5/6
L)
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Classification of Edges in DFS

1. Tree edges: Edge (u, v)is a tree edge if v was black when (u, v) traversed.
2. Back edges: (u, v)is a back edge if v was red when (u, v) traversed.

3. Forward edges: (u, v) is a forward edge if v was gray when (u, v) traversed
and d[v] > d[u].

4. Cross edges (u,v) is a cross edge if v was gray when (u, v) traversed and
d[v] < d[u].

Classifying edges can help to identify [220] \
roperties of the graph, e.g., a graph is \
iRt QElpinly S8k, EHEIRE]S e Y
[3/19]
¢ JT:
[8/19]

acyclic iff DFS yields no back edges. f x
1/1

12/15

- ./‘/
" .
P56 / "
K * [9rt0
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DFS on Undirected Graphs

» |In a depth-first search of an undirected graph, every
edge is either a tree edge or a back edge.

» Why?
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DFS on Undirected Graphs

»> Suppose that (u,v) is a forward edge or a
cross edge in a DFS of an undirected graph.

> (u,v) is a forward edge or a cross edge when v :
is already Finished (grey) when accessed from ’
u.
u

» This means that all vertices reachable from v
have been explored.

» Since we are currently handling u, u must be red. x

» Clearly v is reachable from u. /

» Since the graph is undirected, u must also be . E
reachable from v.

» Thus u must already have been Finished: u must
be grey.

» Contradiction!
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» DFS Algorithm
» DFS Example

» DFS Applications
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DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colourfu] « RED
for each v e Adj[u] //lexplore edge (u,v) )

if color{v] = BLACK ot w:;lf ;
DFS-Visit(v) = VEZVI jlv1l=6(E)
colour[u] « GRAY -

Thus running time = 6(V + E) M
(assuming adjacency list structure)
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DFS Application 1: Path Finding

» The DFS pattern can be used to find a path between two given vertices u and z,
if one exists

» We use a stack to keep track of the current path

» If the destination vertex z is encountered, we return the path as the contents of

the stack DFS-Path (u,z,stack)
Precondition: u and z are vertices in a graph, stack contains current path
Postcondition: returns true if path from u to z exists, stack contains path
colour[u] « RED
push u onto stack
ifu=z
return TRUE
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK
if DFS-Path(v, z,stack)
return TRUE

colour[u]l « GRAY
pop u from stack
return FALSE

YORK ' EECS 2011
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DFS Application 2: Cycle Finding

» The DFS pattern can be used to determine whether a graph is acyclic.
> |If a back edge is encountered, we return true.

DFS-Cycle (u)
Precondition: u is a vertex in a graph G
Postcondition: returns true if there is a cycle reachable from u.
colourfu] « RED
for each v € Adj[u] //explore edge (u,v)
if color[v] = RED //back edge
return true
else if color[v] = BLACK
if DFS-Cycle(v)
return true
colour[u] <« GRAY
return false
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Why must DFS on a graph with a cycle
generate a back edge”?

» Suppose that vertex s is in a connected
component S that contains a cycle C. @

» Since all vertices in S are reachable from
S, they will all be visited by a DFS from s.

> Let v be the first vertex in C reached by a
DFS from s.

» There are two vertices u and w adjacent
to v on the cycle C.

» wlog, suppose u is explored first.

» Since w is reachable from u, w will
eventually be discovered.

» When exploring w's adjacency list, the
back-edge (w, v) will be discovered.
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